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ABSTRACT 
Memetic algorithms have become to gain increasingly important 
for solving large scale combinatorial optimization problems. 
Typically, the extent of the application of local searches in 
canonical memetic algorithm is based on the principle of “more is 
better”. In the same spirit, the island model parallel memetic 
algorithm (PMA) is an important extension of the canonical 
memetic algorithm which applies local searches to every 
transitional solutions being considered.  For PMA which applies 
complete local search, we termed it as PMA-CLS.  In this paper, 
we consider the island model PMA with selective application of 
local search (PMA-SLS) and demonstrate its utility in solving 
complex combinatorial optimization problems, in particular large-
scale quadratic assignment problems (QAPs). Based on our 
empirical results, the PMA-SLS compared to the PMA-CLS, can 
reduce the computational time spent significantly with little or no 
lost of solution quality. This we concluded is due mainly to the 
ability of the PMA-SLS to manage a more desirable diversity 
profile as the search progresses.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search − Heuristic methods; G.1.6 [Mathematics 
of Computing]: Optimization − Global optimization  

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
combinatorial optimization, quadratic assignment problem, island 
model parallel memetic algorithm, selective local search 

1. INTRODUCTION 
In recent years, the role of local search in the context of genetic 
algorithms and the wider field of evolutionary computing has 

been discussed. Mascato and Norman [12] promoted the term 
“memetic algorithm” to describe genetic algorithm that relies 
heavily on local search. While canonical memetic algorithm with 
complete local search helps improve the convergence rate 
significantly, poor diversity often results at later stage of search 
evolution due to excessive focus on local search. Intensive local 
search also incurs huge computation time. On the other hand, 
while using modest local search in PMA helps maintain good 
diversity of solutions throughout the search, the quality of 
solution precision is often compromised. In this paper, we 
consider the island model PMA with selective application of local 
search (PMA-SLS) and demonstrate its utility in solving complex 
combinatorial optimization problems, in particular large-scale 
quadratic assignment problems (QAPs).  

Among the many classes of combinatorial optimization problems, 
the quadratic assignment problems (QAPs) are among the hardest 
with many interesting practical applications. It was formulated by 
Koopmans and Beckmann [7] for location planning of economic 
activities. To formulate a QAP mathematically, consider n 
facilities to be assigned to n locations with minimum cost. The 
QAP can be described by two n × n matrices A = [ ]ija and 

B= [ ]ijb . The goal is to find a permutation π  of the set 
M={1,2,3,…,n}, which minimizes the objective function C(π ) as 
in Eq.(1). 
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= ∑∑                                        (1) 

In the above equation, matrix A can be interpreted as a distance 
matrix, i.e. ija denotes the distance between location i and 

location j. B is referred to as the flow matrix, i.e. ijb represents the 
flow of materials from facility i to facility j. We represent an 
assignment by the vectorπ . ( )iπ  is the location to which facility 
i is assigned. 

Since QAPs are NP-hard problems, only explicit enumeration 
approaches are known to solve them optimally. However, the 
large scale problems (n>20) are usually intractable due to the poor 
scalability of the enumeration methods. From literature survey, 
many heuristic approaches have played an important role in 
algorithms capable of providing good solutions within tractable 
computational time, such as genetic algorithms (GA) [10, 11], 
memetic algorithms [13, 14].    
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Two distinct features of the PMA-SLS to be noted in our study 
are the sampling size and the local search frequency. For the 
sampling size, we adopted a normal distribution scheme of 
determining the sampling ratio.  As for the local search frequency, 
we imposed a complete local search at the start of evolution with 
a progressively decreasing frequency. In addition, parallel EAs 
have been shown in many studies to produce good quality 
solutions even on highly complex problems [17, 18]. Hence it is 
important that the intrinsic parallelism of EA is adopted in our 
work. A grid-enabled solver is also used to facilitate the 
implementation of our parallel MA, such that islands of MA 
individuals are executed across powerful computing resources 
within a distributed computing environment. Based on our 
empirical results, the PMA-SLS compared to the PMA-CLS, 
generally converged to better solution quality with a much lower 
computation time.  This we concluded is due mainly to the ability 
of the PMA-SLS to manage a more desirable diversity profile as 
the search progresses. 

This paper is organized as follows. Section 2 provides a brief 
overview of the memetic algorithm and parallel memetic 
algorithm. Section 3 focuses on the island model parallel MA in 
detail and a selective local search strategy is also introduced in 
the section. Section 4 presents the empirical results for selective 
local search based multi-island model parallel memetic algorithm 
(PMA-SLS), with comparisons to our previous work (PHGA) [10, 
11], complete parallel memetic algorithm, (PMA-CLS). Analyses 
of the results obtained in terms of solution quality, computational 
time, solution precision, and scalability are also presented in the 
section. Finally, section 5 concludes the paper with some 
directions for future work. 

2. MEMETIC ALGORITHMS AND 
PARALLEL MEMETIC ALGORITHMS 
2.1 Memetic Algorithm 
Memetic algorithm is a marriage between a population-based 
global search and the local improvement made by each of the 
individuals. Some memetic algorithms have been applied quite 
successfully in a wide range of combinatorial and continuous 
optimization problems [6, 9, 13, 14, 15]. In particular, large 
instances of many well-known combinatorial optimization 
problems have been solved to optimality where other meta-
heuristics have failed to produce comparable results [13]. In 
standard memetic algorithms, a complete local search is 
performed on every individual in the MA’s population. Goldberg 
and Voessner [4] presented a theoretical framework for discussing 
the balance between genetic search and local search. Hart [6] 
investigated several issues especially related to local search for 
designing efficient memetic algorithms for continuous 
optimization. Land [9] extended Hart’s analysis to the 
combinatorial optimization domain where the balance between 
genetic search and local search was referred to as the local/global 
ratio. The balance can be also adjusted by the use of different 
neighbourhood structures. Krasnogor [8] investigated how to 
change the size and the type of neighbourhood structures 
dynamically in the framework of multimeme memetic algorithms 
where each meme had a different neighbourhood structure, a 
different acceptance rule and a different number of iterations of 
local search. Ong et al [15] also considered using multiple local 
methods or memes during a memetic algorithm search in the spirit 

of Lamarckian learning on continuous optimization problems. In 
summary, most of the researchers in the literature address the 
following issues pertinent to memetic algorithms:  
(1) How often should local search be applied? 
(2) On which solutions should local search be used? 
(3) How long should local search be run? 
(4) How efficient does local search need to be? 
(5) What local search method or meme should be used for a 
particular problem or individual? 

In this paper, we present a study on applying local search to 
solutions in the PMA population selectively so as to improve the 
efficiency of memetic algorithm. It is worth nothing that the 
present work represents a study relating to questions (1) and (2) 
listed above in the context of solving large scale QAPs.  

2.2 Parallel Memetic Algorithm  
Our previous work [17, 18] has shown that the success of the 
island model parallel hybrid GA. Similar to parallel GAs, parallel 
memetic algorithm is more prominent because of its distributed 
and flexible features. It is also easy to implement and has great 
potential for substantial improvement in search performance. 
There are a variety of models for parallelizing memetic algorithm 
in the literature, such as employing a blackboard mechanism in a 
parallel asynchronous memetic algorithm proposed [1], and the 
master/slave algorithm [3]. Here, we consider using an island 
model parallel memetic algorithm in our work. 

3. ISLAND MODEL PARALLEL 
MEMETIC ALGORITHM 
3.1 Algorithm Structure 
As in our previous work [17, 18], the PMA studied in this paper 
still adopted the multi-island model. In the general multi-island 
model, all islands are identical except for the root island (RI) 
which holds additional administrative duties to effect the 
migration of individuals across the different subpopulations. By 
doing this, we attempt to facilitate a greater bias towards 
population diversity. This offers opportunities to explore a wider 
scope of the solution landscape, reducing the tendency for local 
minima attraction. In our work, we utilize the island model to 
implement the PMA using selective local search strategy. The 
general template of the parallel memetic algorithm used in each 
subpopulation is shown in Figure 3-1. The local search procedure 
implemented in the memetic algorithm is a form of k-gene 
exchange [10, 11, 17, 18].  

3.2 Selective Local Search Strategy 
While the canonical memetic algorithm with complete local 
search has often shown great success on increasing search 
convergence rate, poor diversity may result due to excessive local 
search. On the other hand, while using modest local search in 
PMA helps maintain good diversity of solutions throughout the 
search, the quality of solution precision is often compromised [10, 
11]. Here, we investigate a selective local search strategy in our 
multi-island PMA. We consider forcing a larger intensity of local 
search in the earlier stage than later stages of evolutionary search 
and apply local search with adaptively decreasing frequency, f, as 
the search progresses. Here, we model the intensity of local 
search using a Gaussian distribution defined as equation (2).                                  
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Figure 3-1 The pseudo code for memetic algorithm with selective local search strategy 
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          (2)                                      

where gen is the evolution generation ( 0gen ≥ ), µ is the mean 
value, σ is the standard deviation, η represents a scaling factor on 
the number of chromosomes to apply local search. Our objective 
is to allocate candidates for local search based on a normal 
distribution over time. Then the number of chromosomes to apply 
local search (Num) is defined by the Gaussian function given in 
equation (2), evolution generation (gen) and subpopulation size 
(Subpopulation_size). It is given by: 

            _Num Subpopulation sizeγ= ∗                                 (3) 

where Num denotes the number of candidates whereby local 
search is applied for generation gen.  

Motivated by the work in [6], elitism mechanism identifies the 
best individual(s) in a population and ensures that they exist in the 
next generation. Therefore, these mechanisms induce a strong bias 
based on the rank of individuals in the generation. Introducing 
elitism will reduce the local search frequency since the elitism 
mechanisms provide some aids in the GA’s competitive search. 
Considering the successfully employed elitism mechanism in our 
previous work [10, 11, 17, 18], so in the selective local search 
strategy discussed above, the selective candidates are sampled 
randomly from the PMA’s subpopulation.  

4. EMPIRICAL STUDY  
For convenience, serial MA employing complete local search 
strategy in the whole population without using any parallel 
mechanisms is denoted as SMA. PMA-SLS denotes the island 
model PMA with the selective local search strategy. PMA-CLS 
refers to the island model PMA with the complete local search 
strategy, which means applying the local search to the whole 
subpopulation during every generation. PHGA [*] abbreviates the 
island model parallel hybrid GA referred to previous work [*] for 
comparison purpose. 

The algorithms were evaluated by averaging over 10 optimization 
runs. The configuration of the PMA control parameters is 
summarized in Table 4-1. We set the elite size of the serial 
algorithm to be 4, therefore when M=2, the elites for each  

Table 4-1 Parameters setting for the PMA 

MA parameters Multi-island PMA 

Population size 240 

Subpopulation size 240/M 

Maximum number of generations 180 

Fitness scaling factor Sf 3 

Crossover probability Pc 0.8 

Mutation probability Pm 0.05 

Zerofit threshold constant Kz 5 

  M: number of islands (processing nodes) 

Table 4-2 Migration control parameters of PMA 
Control Parameter Description 

Migration Interval Every 10 generations 

Migration Rate One chromosome 

Migration Policy Simple elitist strategy 

Migration Topology One-way ring strategy 

 
subpopulation is 2, and when M is more than 3, the elites for each 
subpopulation is kept at 1. In addition, based on the observation 
of the quick convergence speed of MA, we set up the maximum 
number of generations to control the termination of SMA, PMA-
SLS and PMA-CLS as 180, shorter than the 500 used in previous 
work pertaining to PHGA [17, 18]. Based on our previous study 
[17, 18], the migration control parameters are set as in Table 4-2. 
Several criteria have been defined to measure the performance as 
listed in Table 4-3. The search terminates when either one of the 
following criteria is satisfied: 

i.  Solution stalls for more than 70 successive generations;                          
ii. Maximum number of generations has been reached 

As for the parameters pertaining to the selective local search 
strategy of PMA-SLS, based on preliminary computational 
experiments, we set µ as 0, σ as 200, and η equals to 500. We use 
a graduated scheme to manage the periodicity of local search 
denoted as f. For gen<50, we set f to be 10, meaning local search 
is carried out every 10 generations. For gen≥50, f is set to 30. 

BEGIN 
 Initialize: Generate an initial MA subpopulation. 
 While (Stopping conditions are not satisfied) 
  Evaluation of all individuals in the subpopulation 
  For each individuals in the population 

 Selectively apply local search to the individuals in the subpopulation 
 Proceed with local improvement and replace the genotype in the subpopulation with the improved solution. 

End For 
Apply standard GA operators to create a new population; i.e., Selection, Mutation and crossover. 

 End While 
END 
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Table 4-3  Criteria for measuring performance shown in Table 4-7 to 4-11 
Criterion Definition

CPU time Average computation time in seconds upon termination of the algorithm.
Generation Average number of generations elapsed before the occurrence of the best solution.

TG Average number of generations elapsed before the algorithm terminates.
Average Average objective value of the solutions obtained for all the simulation runs.

Average gap 
Difference between the Average  and the best-known value of the objective function.

where bk  is the best-known value of the objective function.
Best Best solution obtained among all the simulation runs.

Gap
Difference between the best-found value and the best-known value of a benchmark problem.

where bf  is the best- found value of the objective function.
Success rate Number of times the algorithm finds the best-known solution out of all the simulation runs.

( ) /( ) *100%AverageG ap A verage bk bk= −

( ) /( ) *100%gap bf bk bk= −
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Figure 4-1 Configured Gaussian function  

Since the migration interval is set as 10 generations in Table 4-2, 
when PMA-SLS invokes the local search according to the 
frequency f, the local search is carried out in every generation 
during the migration interval. The Gaussian function configured 
by the above parameters is shown in Figure 4-1.   

Firstly, we demonstrate the advantage of memetic algorithm with 
selective local search compared to complete local search. We test 
both PMA-CLS and PMA-SLS on the two-island model for the 
same benchmark, sko100b. The results are shown in Table 4-4. 

Particularly, we monitor closely the change in diversity of each 
subpopulation for PMA-SLS and PMA-CLS by measuring the 
entropy of each subpopulation shown in Figure 4-2. Consider Q to 
be mutually exclusive subsets St1, St2,…，StQ in the tth population. 
The number of individuals in each subset is |St1|，|St2|，…，
|StQ|, respectively. Then the entropy Et of the tth population can be 
calculated as follows [5]: 

                                    
1

log( )
Q

t j j
j

E p p
=

= −∑                     (4) 
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Figure 4-2 Comparison of entropy between PMA-SLS and 

PMA-CLS 

where 
tj

j

S
p

N
= with N being the population size. 

From Figure 4-2, it is observed that PMA-SLS can consistently 
maintain a good level diversity as the evolution progresses. On 
the other hand, the entropy of PMA-CLS is reduced very sharply, 
indicating that local search has a tendency to speed up 
convergence significantly. From an evolutionary process point of 
view, PMA-CLS shows poorer diversity due to excessively 
localized search, especially in the later stage of evolution. This 
indicates a likelihood of higher ratio of duplicate solutions in the 
population. As a result, there is a higher level of redundancy in 
local searches being applied to the whole subpopulation over 
many generations. In addition, as shown in Table 4-4, both PMA-
CLS and PMA-SLS achieved almost the same level of solution 
quality, but PMA-CLS usually incurs higher computational cost 
due to the intensive local search. Thus, we can observe that PMA-
SLS can reduce the computational time spent significantly with

 
Table 4-4 Comparison between PMA-SLS and PMA-CLS 

sko100b 2-island CPU time Generation TG Solution Gap
153890 PMA-CLS 1461 81 151 153954 0.04%

PMA-SLS 823 84 154 153950 0.04%
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little or no lost of solution quality. This is mainly attributed to its 
capability to maintain a higher level of population diversity. 

Tables 4-5 to 4-9 summarize the empirical results of testing on a 
diverse set of large scale QAP benchmarks. The benchmark 
problems considered in the present study are classes of synthetic 
problems randomly generated or created to study the robustness 
of algorithms for solving QAPs [2]. The values in the first column 
of Tables 4-5 to 4-9 are the best-known values of the respective 
benchmark problems. The results of PMA-SLS are highlighted in 
bold for ease of comparison. Tables 4-5 and 4-6 present a detailed 

comparison study between PMA-SLS and results from our 
previous work [17, 18] on sko100b and tai100b benchmarks, 
respectively. Tables 4-7, 4-8 and 4-9 show the simulation results 
on the other three classes QAPs, namely, tai100a, sko100* and 
wil100, respectively.  

4.1 Comparison and Analysis 
An inspection of the experimental results indicates that the island 
model parallel memetic algorithm with selective local search 
strategy can significantly improve the effectiveness and efficiency

Table 4-5 Results of testing on sko100b benchmark 
CPU time Generation TG Average Average gap Best Gap Success rate

sko100b SMA 3096.50 127.30 160.50 153955.60 0.04% 153890 0.00% 20.00%
153890 2-island PMA-SLS 875.20 113.60 168.40 154012.80 0.08% 153904 0.01% 0.00%

PMA-CLS 1350.00 94.70 145.90 153950.40 0.04% 153890 0.00% 20.00%
PHGA[17] 183.60 171.80 241.80 154215.00 0.21% 153924 0.02% 0.00%

3-island PMA-SLS 1084.80 136.40 173.90 153975.40 0.06% 153934 0.03% 0.00%
PMA-CLS 1045.30 111.30 158.40 153936.20 0.03% 153890 0.00% 20.00%
PHGA[18] 188.80 185.60 255.60 154441.00 0.36% 153960 0.05% 0.00%

4-island PMA-SLS 898.00 137.10 178.10 153990.80 0.07% 153902 0.01% 0.00%
PMA-CLS 1445.90 122.20 174.60 153952.20 0.04% 153898 0.01% 0.00%
PHGA[18] 174.50 282.50 352.50 154213.80 0.21% 153952 0.04% 0.00%

6-island PMA-SLS 429.40 130.20 168.20 153985.00 0.07% 153890 0.00% 10.00%
PMA-CLS 694.30 104.80 154.50 153925.40 0.02% 153890 0.00% 20.00%
PHGA[18] 148.80 213.30 283.30 154254.60 0.24% 154074 0.12% 0.00%

8-island PMA-SLS 568.30 119.30 166.90 153942.80 0.04% 153894 0.00% 0.00%
PMA-CLS 484.00 118.80 162.40 153937.60 0.03% 153890 0.00% 10.00%
PHGA[18] 136.90 173.20 243.20 154295.60 0.26% 153910 0.01% 0.00%

10-island PMA-SLS 289.30 95.20 148.80 153987.80 0.06% 153890 0.00% 10.00%
PMA-CLS 439.00 111.20 144.40 153942.60 0.04% 153890 0.00% 30.00%
PHGA[18] 119.60 150.80 220.80 154195.80 0.20% 153936 0.03% 0.00%  

Table 4-6 Results of testing on tai100b benchmark 
CPU time Generation TG Average Average gap Best Gap Success rate

tai100b 2-island PMA-SLS 782.40 106.70 134.00 1186275856.50 0.02% 1185996137 0.00% 40.00%
1185996137 PHGA[17] 186.90 175.30 245.30 1188882832.20 0.24% 1186007112 0.00% 0.00%

3-island PMA-SLS 1042.40 89.50 138.50 1186201737.10 0.02% 1185996137 0.00% 20.00%
PHGA[18] 191.70 179.00 249.00 1189426579.70 0.29% 1187378490 0.12% 0.00%

4-island PMA-SLS 647.50 92.60 102.30 1186007361.40 0.00% 1185996137 0.00% 80.00%
PHGA[18] 178.10 268.80 332.00 1187539521.00 0.13% 1186007112 0.00% 0.00%

6-island PMA-SLS 356.60 88.30 104.90 1186058956.40 0.01% 1185996137 0.00% 70.00%
PHGA[18] 160.10 233.70 296.70 1187892570.00 0.16% 1185996137 0.00% 10.00%

8-island PMA-SLS 407.80 73.00 89.80 1186081947.80 0.01% 1185996137 0.00% 70.00%
PHGA[18] 153.50 261.10 318.30 1187905557.00 0.16% 1185996137 0.00% 10.00%

10-island PMA-SLS 220.70 68.70 82.70 1186053344.20 0.00% 1185996137 0.00% 80.00%
PHGA[18] 148.00 250.00 320.00 1187927883.00 0.16% 1186052259 0.00% 0.00%   

Table 4-7 Results of testing on tai100a benchmark 
CPU time Generation TG Average Average gap Best Gap Success rate

tai100a 2-island PMA-SLS 860.00 127.20 164.60 21458262.60 1.58% 21382118 1.22% 0.00%
21125314 PHGA[17] 222.80 238.50 308.50 21464686.20 1.61% 21335594 1.00% 0.00%

3-island PMA-SLS 1056.30 119.90 161.50 21430953.00 1.45% 21341252 1.02% 0.00%
4-island PMA-SLS 889.60 140.20 170.90 21420954.60 1.40% 21352956 1.08% 0.00%
6-island PMA-SLS 451.40 152.50 180.00 21373508.00 1.17% 21270370 0.69% 0.00%
8-island PMA-SLS 582.90 146.90 178.40 21363905.00 1.13% 21342280 1.03% 0.00%

10-island PMA-SLS 309.60 123.60 169.50 21382655.00 1.21% 21295312 0.80% 0.00%  
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Table 4-8 Results of testing on sko100* benchmarks 
CPU time Generation TG Average Average gap Best Gap Success rate

sko100a 2-island PMA-SLS 883.60 133.80 175.10 152188.20 0.12% 152042 0.03% 0.00%
152002 PHGA[17] 194.00 203.40 273.40 152322.80 0.21% 152122 0.08% 0.00%

3-island PMA-SLS 1084.30 128.80 172.90 152186.80 0.12% 152056 0.04% 0.00%
4-island PMA-SLS 885.20 142.40 176.80 152119.00 0.08% 152058 0.04% 0.00%
6-island PMA-SLS 431.90 138.90 176.90 152109.40 0.07% 152067 0.04% 0.00%
8-island PMA-SLS 560.80 122.70 169.30 152103.00 0.06% 152036 0.02% 0.00%

10-island PMA-SLS 283.20 98.10 156.00 152102.80 0.06% 152042 0.03% 0.00%
sko100c 2-island PMA-SLS 939.30 121.80 168.40 147934.80 0.05% 147862 0.00% 10.00%
147862 PHGA[17] 184.40 205.80 275.80 148140.40 0.18% 148050 0.13% 0.00%

3-island PMA-SLS 1104.10 129.60 171.40 147943.00 0.05% 147868 0.00% 0.00%
4-island PMA-SLS 845.90 111.40 160.50 147908.20 0.03% 147862 0.00% 10.00%
6-island PMA-SLS 416.80 106.40 151.80 147885.60 0.02% 147862 0.00% 20.00%
8-island PMA-SLS 531.60 103.60 150.90 147885.80 0.01% 147862 0.00% 10.00%

10-island PMA-SLS 284.20 107.90 151.00 147895.40 0.02% 147862 0.00% 10.00%
sko100d 2-island PMA-SLS 883.00 111.00 166.90 149803.60 0.15% 149618 0.03% 0.00%
149576 PHGA[17] 232.10 259.90 327.40 150036.80 0.31% 149732 0.10% 0.00%

3-island PMA-SLS 1077.80 121.30 166.10 149788.00 0.14% 149692 0.08% 0.00%
4-island PMA-SLS 881.20 146.70 180.00 149752.00 0.12% 149630 0.04% 0.00%
6-island PMA-SLS 436.80 135.80 173.80 149699.40 0.08% 149578 0.00% 0.00%
8-island PMA-SLS 595.60 111.20 169.60 149717.40 0.10% 149640 0.04% 0.00%

10-island PMA-SLS 312.60 120.10 167.20 149681.60 0.07% 149584 0.01% 0.00%
sko100e 2-island PMA-SLS 845.40 121.00 166.70 149205.80 0.04% 149150 0.00% 10.00%
149150 PHGA[17] 235.50 252.90 322.90 149642.20 0.33% 149198 0.03% 0.00%

3-island PMA-SLS 1037.20 113.20 161.90 149207.40 0.04% 149166 0.01% 0.00%
4-island PMA-SLS 898.50 114.30 164.50 149202.60 0.04% 149150 0.00% 10.00%
6-island PMA-SLS 452.10 113.70 156.90 149179.20 0.02% 149150 0.00% 30.00%
8-island PMA-SLS 521.50 115.20 145.90 149167.00 0.01% 149150 0.00% 30.00%

10-island PMA-SLS 274.20 91.20 130.00 149176.40 0.02% 149150 0.00% 40.00%
sko100f 2-island PMA-SLS 888.40 104.60 153.70 149232.80 0.13% 149126 0.06% 0.00%
149036 PHGA[17] 206.50 214.80 284.80 149496.60 0.31% 149228 0.13% 0.00%

3-island PMA-SLS 1168.50 135.20 174.10 149210.80 0.12% 149136 0.07% 0.00%
4-island PMA-SLS 872.10 126.10 166.70 149150.40 0.08% 149036 0.00% 10.00%
6-island PMA-SLS 451.70 136.10 172.30 149205.40 0.11% 149078 0.03% 0.00%
8-island PMA-SLS 565.90 122.50 166.10 149178.00 0.10% 149058 0.01% 0.00%

10-island PMA-SLS 300.30 107.00 161.40 149203.40 0.11% 149114 0.05% 0.00%  
Table 4-9 Results of testing on wil100 benchmark 

CPU time Generation TG Average Average gap Best Gap Success rate
wil100 2-island PMA-SLS 882.10 114.50 166.20 273198.80 0.06% 273054 0.01% 0.00%
273038 PHGA[17] 218.00 226.10 292.80 273458.20 0.15% 273236 0.07% 0.00%

3-island PMA-SLS 1111.20 132.50 168.40 273159.20 0.04% 273054 0.01% 0.00%
4-island PMA-SLS 895.20 115.20 165.60 273228.60 0.07% 273054 0.01% 0.00%
6-island PMA-SLS 445.00 99.30 164.30 273103.80 0.02% 273044 0.00% 0.00%
8-island PMA-SLS 560.10 115.90 160.30 273103.40 0.02% 273038 0.00% 10.00%

10-island PMA-SLS 295.20 93.90 161.20 273128.60 0.03% 273054 0.01% 0.00%  
in solving large scale QAPs. The higher success rate of PMA-SLS 
also indicates the improved solution precision due to the higher 
level of diversity maintained during the evolution process for 
PMA-SLS.  

Firstly, from a solution quality point of view, both SMA and 
PMA achieved much better solution quality compared to PHGA. 
This is evident from the much improved solution gap and the 
higher success rate achieved. From the viewpoint of 

computational time, compared to the serial MA, much shorter 
computational time is consumed by PMA-SLS and PMA-CLS to 
achieve almost the same level of solution quality, indicating the 
advantage of employing parallel memetic algorithms. The 
comparison between PMA-SLS, PMA-CLS and PHGA on 
sko100b benchmark is shown in Figure 4-3.  

The plot in Figure 4-3(b) shows that PMA-SLS and PMA-CLS 
improve the solution quality significantly compared to PHGA. It 
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Figure 4-3 Comparison between PMA-SLS, PMA-CLS and 
PHGA on sko100b benchmark 

 
is noted that the maximum number of generations for PHGA was 
set at 500. Instead, the maximum number of generations for 
PMA-SLS and PMA-CLS was set to 180. This is indicative of the 
powerful search capability and quick convergence speed of the 
PMA. As for the computational time shown in Figure 4-3(a), the 
greater reliance on local search makes PMA more time-
consuming than the PHGA. In this respect, the island model 
parallel paradigm of the memetic algorithm and the distributed 
computing technology can help reduce the computational time 
significantly. Furthermore, the selective local search strategy used 
in PMA-SLS improves the efficiency of the PMA remarkably. 
This validates the notion of PMA-SLS being able to search more 
efficiently than PMA-CLS to achieve comparable solution 
quality. 

The results of testing on tai100b benchmark in Table 4-6 also 
showed that PMA-SLS can achieve much better solution quality 
with comparable computational time, especially in the case where 
the number of processor increases to 10 machines. It is also 
observed that the tai100b benchmark shows a much higher 
Success rate, indicating that the PMA-SLS has greater success in 
locating the global optimum. This implies that the PMA is 
capable of locating the best-known solution more frequently than 
the PHGA. 

In Tables 4-7 and 4-9, based on observations of the two criteria, 
Gap and Success Rate, the results of the different benchmarks 
(sko100* and wil100) show that PMA-SLS can significantly 
improve the solution quality in comparable computational time. 
The results indicate that PMA-SLS is superior to the PHGA for 
all benchmarks studied except for one instance, namely, tai100a, 
where marginal improvement in terms of solution quality was 
observed. Taillard [16] mentioned that for this type of randomly 
generated instances, finding good solutions (about 1% and 2%) is 
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Figure 4-4 Scalability of sko100* benchmarks by PMA-SLS 

easy, but it is extremely difficult to find the optimum. 

When judged against existing results available in the literature, it 
is noted that the results of several instances using PMA-SLS is 
competitive or better than that of the MAs developed by other 
authors. For example, our results on the tai100a benchmark 
problem in Table 4-7 using the PMA-SLS is comparable to that 
found in [13]. The Average gap of tai100a was reported as 
1.135%. The Average gap of our results on tai100a using 8 
machines is 1.13%. Also the results of tai100b for PMA-SLS are 
much better than that shown in [13]. The Average gap of tai100b 
was reported as 0.026%, with the Success rate being less than 
50%. On the other hand, Average gap of 0% was achieved by our 
PMA-SLS using 4 or 10 machines, and the Success rate is very 
commendable, being as high as 80%. Furthermore, it is worth 
nothing that the PMA-SLS is also capable of attaining search 
quality that is significantly better than that obtained in [14] on the 
sko100a problem. As shown in Table 4-8, on the sko100a 
benchmark, the Average gap obtained in [14] was 0.096%, while 
we were able to reduce this value to 0.06%.  

4.2 Analysis on Scalability 
Observing the trend of computational time of the PMA-SLS, we 
are motivated to further investigate the scalability of the PMA-
SLS along with the increase in the number of islands. For 
example, Figures 4-4 present the empirical results of scalability 
on the sko100* type benchmark problems studied above. 
In Figures 4-4, the results show that the total CPU time of PMA-
SLS reduces accordingly along with the increase in the number of 
computing nodes. This strongly demonstrates the high scalability 
of the island model PMA-SLS realized in a networked computing 
environment. However, the decrease in CPU time for the PMA-
SLS does not follow a strict degressive trend when the number of 
islands is 3 and 8. An inspection of the figure shows that there are 
tubers at the points corresponding to 3 and 8 processors. Hence, 
one may concur that the capability of multi-island PMA-SLS 
could be related to the size of subpopulations. However, further 
studies are necessary to address this issue appropriately. 

5. CONCLUSION AND FUTURE WORK 
In this paper we propose and experimentally validate the island 
model parallel memetic algorithm with selective local search 
strategy for several large scale QAPs. The empirical results are 
evaluated both in terms of solution quality and computational 
time, and a comprehensive comparative study with PHGA, PMA-
CLS and results of MA available in the other literature is 
conducted. The performance in terms of scalability of PMA-SLS 
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is investigated as well. According to the results, it can be 
concluded that the island model parallel memetic algorithm with 
selective local search strategy can reduce the computational time 
spent significantly with little or no lost of solution quality for 
large scale QAPs. The higher success rate of PMA-SLS also 
indicates the improved solution precision due to the higher level 
of diversity maintained during the evolutionary process. 
The results obtained have opened up several issues for future 
research. In particular, based on the observation on the scalability 
of the PMA-SLS along with the increase in the number of islands, 
the inspection of some tubers in the scalability trend line may 
motivate us to further address the issue that the capability of 
multi-island PMA-SLS could be related to the size of 
subpopulations. In addition, the issue on the effect of other 
parameters pertaining to the selective local search strategy on 
PMA-SLS’s performance need to be explored to achieve more 
optimal parameters setup for further improvement in performance.  

The successful application of the PMA-SLS within a distributed 
computing environment in solving several large scale QAPs 
demonstrates its potential in solving other computationally 
demanding optimization problems. In our opinion, the potential of 
future algorithmic progress for the QAPs and other difficult 
optimization problems can be achieved by a marriage between the 
island model parallel memetic algorithm paradigm and the power 
that computational grids have to offer. 
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